Object

Title: Performance Analysis of Filtered OFDM Based Downlink and Uplink NOMA System over Nakagami-m Fading Channel, Journal of Telecommunications and Information Technology, 2021, nr 2

Description:

Efficient consumption of available resources and fulfillment of increasing demands are the two main challenges which are addressed by exploring advanced multiple access schemes along with efficient modulation techniques. To this end, non-orthogonal multiple access (NOMA) is discussed as a promising scheme for future 5G traffic. NOMA enables the users to share same resource block, permitting certain level of interference. In this paper, we propose filtered OFDM (F-OFDM) as a transmission waveform for NOMA systems, as it offers all the advantages of OFDM with the additional provision of sub-band filtering to satisfy the diverse services of the users. We examine F-OFDM in both downlink and uplink NOMA systems. Error-related performances of both downlink and uplink F-OFDM NOMA systems are analyzed and compared with conventional OFDM NOMA system over Nakagami-m fading channel. The results show that the error performance of F-OFDM NOMA is better than that of OFDM NOMA. An improvement of about 2 dB and 1 dB in bit error rate is achieved in downlink and uplink F-OFDM NOMA, respectively. Monte Carlo simulations are conducted for different values of fading parameter m, supporting the obtained analytical results

Publisher:

National Institute of Telecommunications

Format:

application/pdf

Resource Identifier:

ISSN 1509-4553, on-line: ISSN 1899-8852 ; oai:bc.itl.waw.pl:2175

Source:

Journal of Telecommunications and Information Technology

Language:

ang

Rights Management:

Biblioteka Naukowa Instytutu Łączności

Object collections:

Last modified:

Jul 13, 2021

In our library since:

Jul 12, 2021

Number of object content hits:

115

All available object's versions:

https://bc.itl.waw.pl/publication/2475

Show description in RDF format:

RDF

Show description in OAI-PMH format:

OAI-PMH

Objects Similar

×

Citation

Citation style:

This page uses 'cookies'. More information