Obiekt

Tytuł: A Deep Learning-based Approach for Channel Estimation in Multi-access Multi-antenna Systems, Journal of Telecommunications and Information Technology, 2024, nr 3

Tytuł publikacji grupowej:

2024, nr 3, JTIT-artykuły

Abstrakt:

This paper studies estimating the channel state information at the end of receiver (CSIR) for multiple transmitters communicating with only one receiver so that the latter can decode the incoming signal more efficiently. The transmitters and the receiver are all equipped with multi-antennas and using orthogonal space-time block codes (OSTBC). An algorithm is developed based on deep learning for estimating multi-user multiple-input multiple-output (MU-MIMO) channels. The algorithm could estimate the CSIR using a single pilot block. The proposed convolutional neural network (CNN) architecture designed for this task begins with an input layer that accepts grayscale images, followed by six convolutional blocks for feature extraction and processing. The network concludes with a fully connected layer to output the estimated channel information. It is trained using a regression loss function to map input images to accurate channel information accurately. The performance of the proposed method is compared with classical methods like least square and subspace-based methods, including Capon and rank revealing QR (RRQR) methods. CNN achieved better performance in comparison with the reference. Computer simulations are included to validate the proposed method.

Numer:

3

Wydawca:

National Institute of Telecommunications

Identyfikator zasobu:

oai:bc.itl.waw.pl:2356 ; ISSN 1509-4553, on-line: ISSN 1899-8852

DOI:

10.26636/jtit.2024.3.1701

ISSN:

1509-4553

eISSN:

1899-8852

Źródło:

Journal of Telecommunications and Information Technology

Język:

ang

Licencja:

CC BY 4.0

Właściciel praw:

Instytut Łączności - Państwowy Instytut Badawczy

Kolekcje, do których przypisany jest obiekt:

Data ostatniej modyfikacji:

2 paź 2024

Data dodania obiektu:

2 paź 2024

Liczba wyświetleń treści obiektu:

23

Wszystkie dostępne wersje tego obiektu:

https://bc.itl.waw.pl/publication/2669

Wyświetl opis w formacie RDF:

RDF

Wyświetl opis w formacie OAI-PMH:

OAI-PMH

Obiekty Podobne

×

Cytowanie

Styl cytowania:

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji