Obiekt

Tytuł: AI-based Violent Incident Detection in Surveillance Videos to Enhance Public Safety, Journal of Telecommunications and Information Technology, 2025

Tytuł publikacji grupowej:

2025, nr 4, JTIT-artykuły

Opis:

kwartalnik

Abstrakt:

Acts of violence may occur at any moment, even in densely populated areas, making it important to monitor human activities to ensure public safety. Although surveillance cameras are capable of detecting the activity of people, around-the-clock monitoring still requires human support. As such, an automated framework capable of detecting violence, issuing early alerts, and facilitating quick reactions is required. However, automation of the entire process is challenging due to issues such as low video resolution and blind spots. This study focuses on detecting acts of violence using three video data sets (movies, hockey game and crowd) by applying and comparing advanced ResNet architectures (ResNet50V2, ResNet101V2, ResNet152V2) with the use of the bidirectional gated recurrent unit (BiGRU) algorithm. Spatial features of each video frame sequence are extracted using these pre-trained deep transfer learning models and classified by means of an optimized BiGRU model. The experimental results were then compared with those achieved by wavelet feature extraction approaches and other classification models, including CNN and LSTM. Such an analysis indicates that the combination of ResNet152V2 and BiGRU offers decent performance in terms of higher accuracy, recall, precision, and F1 score across the different datasets. Furthermore, the results indicate that deeper ResNet models significantly improve overall performance of the model in terms of violence detection scores, relative to shallower ResNet models. ResNet152V2 was found to be the ultimate model across the datasets when it comes to a high degree of accuracy in detecting acts of violence.

Numer:

4

Wydawca:

National Institute of Telecommunications

Identyfikator zasobu:

oai:bc.itl.waw.pl:2419

DOI:

10.26636/jtit.2025.4.2328

eISSN:

on-line: ISSN 1899-8852

Źródło:

Journal of Telecommunications and Information Technology

Język:

ang

Prawa:

Biblioteka Naukowa Instytutu Łączności

Licencja:

CC BY 4.0

Kolekcje, do których przypisany jest obiekt:

Data ostatniej modyfikacji:

7 sty 2026

Data dodania obiektu:

7 sty 2026

Liczba wyświetleń treści obiektu:

4

Wszystkie dostępne wersje tego obiektu:

https://bc.itl.waw.pl/publication/2738

Wyświetl opis w formacie RDF:

RDF

Wyświetl opis w formacie OAI-PMH:

OAI-PMH

Obiekty Podobne

×

Cytowanie

Styl cytowania:

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji