Object structure

Modeling of negative bias temperature instability, Journal of Telecommunications and Information Technology, 2007, nr 2


Selberherr, Siegfried ; Grasser, Tibor

Subject and Keywords:

simulation ; interface states ; negative bias temperature instability ; defects ; semiconductor device equations ; reliability, negative bias temperature instability, modeling, simulation, hydrogen, silicon dioxide, defects, interface states, semiconductor device equations ; modeling ; hydrogen ; silicon dioxide


Negative bias temperature instability is regarded as one of the most important reliability concerns of highly scaled PMOS transistors. As a consequence of the continuous downscaling of semiconductor devices this issue has become even more important over the last couple of years due to the high electric fields in the oxide and the routine incorporation of nitrogen. During negative bias temperature stress a shift in important parameters of PMOS transistors, such as the threshold voltage, subthreshold slope, and mobility is observed. Modeling efforts date back to the reaction-diffusion model proposed by Jeppson and Svensson thirty years ago which has been continuously refined since then. Although the reaction-diffusion model is able to explain many experimentally observed characteristics, some microscopic details are still not well understood. Recently, various alternative explanations have been put forward, some of them extending, some of them contradicting the standard reaction-diffusion model. We review these explanations with a special focus on modeling issues.


Instytut Łączności - Państwowy Instytut Badawczy, Warszawa


2007, nr 2

Resource Type:




Resource Identifier:

ISSN 1509-4553, on-line: ISSN 1899-8852


Journal of Telecommunications and Information Technology



Rights Management:

Biblioteka Naukowa Instytutu Łączności



Citation style: