Title: Asymmetric cryptography and practical security, Journal of Telecommunications and Information Technology, 2002, nr 4


Pointcheval, David


2002, nr 4

Resource Type:



Since the appearance of public-key cryptography in Diffie-Hellman seminal paper, many schemes have been proposed, but many have been broken. Indeed, for many people, the simple fact that a cryptographic algorithm withstands cryptanalytic attacks for several years is considered as a kind of validation. But some schemes took a long time before being widely studied, and maybe thereafter being broken. A much more convincing line of research has tried to provide “provable” security for cryptographic protocols, in a complexity theory sense: if one can break the cryptographic protocol, one can efficiently solve the underlying problem. Unfortunately, very few practical schemes can be proven in this so-called “standard model” because such a security level rarely meets with efficiency. A convenient but recent way to achieve some kind of validation of efficient schemes has been to identify some concrete cryptographic objects with ideal random ones: hash functions are considered as behaving like random functions, in the so-called “random oracle model”, block ciphers are assumed to provide perfectly independent and random permutations for each key in the “ideal cipher model”, and groups are used as black-box groups in the “generic model”.In this paper, we focus on practical asymmetric protocols together with their “reductionist” security proofs. We cover the two main goals that public-key cryptography is devoted to solve: authentication with digital signatures, and confidentiality with public-key encryption schemes.


Instytut Łączności - Państwowy Instytut Badawczy, Warszawa



Resource Identifier:

ISSN 1509-4553, on-line: ISSN 1899-8852 ; oai:bc.itl.waw.pl:676


Journal of Telecommunications and Information Technology



Rights Management:

Biblioteka Naukowa Instytutu Łączności

Object collections:

Last modified:

Apr 19, 2010

In our library since:

Apr 19, 2010

Number of object content hits:


All available object's versions:


Show description in RDF format:


Show description in OAI-PMH format:


Objects Similar



Citation style:

This page uses 'cookies'. More information