Obiekt

Tytuł: Development and Optimization of Deep Learning Systems for MRI Analysis in Alzheimer's Disease Monitoring, Journal of Telecommunications and Information Technology, 2024, nr 4

Autor:

Podolszańska, Jolanta

Data wydania:

2024

Typ zasobu:

artykuł

Tytuł publikacji grupowej:

2024, nr 4, JTIT-artykuły

Abstrakt:

Alzheimer's disease is one of the leading causes of dementia worldwide, and its increasing prevalence presents significant diagnostic and therapeutic challenges, particularly in an aging population. Current diagnostic methods, including patient history reviews, neuropsychological tests, and MRI scans, often fail to achieve adequate sensitivity and specificity levels. In response to these challenges, this study introduces an advanced convolutional neural network (CNN) model that combines ResNet-50 and Inception V3 architectures to classify, with a high degree of precision, the stages of Alzheimer's disease based on MRI. The model was developed and evaluated using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and classifies MRI scans into four clinical categories representing different stages of disease severity. The evaluation results, based on the precision, sensitivity and F1 score metrics, demonstrate the effectiveness of the model. Additional augmentation techniques and differential class weighting further enhance the accuracy of the model. Visualization of results using the t-SNE method and the confusion matrix underscores the ability to distinguish between disease categories, supporting the model's potential to aid in neurological diagnosis and classification.

Numer:

4

Wydawca:

National Institute of Telecommunications

Identyfikator zasobu:

ISSN 1509-4553, on-line: ISSN 1899-8852 ; oai:bc.itl.waw.pl:2367

DOI:

10.26636/jtit.2024.4.1815

ISSN:

1509-4553

eISSN:

1899-8852

Źródło:

Journal of Telecommunications and Information Technology

Język:

ang

Licencja:

CC BY 4.0

Właściciel praw:

Instytut Łączności - Państwowy Instytut Badawczy

Kolekcje, do których przypisany jest obiekt:

Data ostatniej modyfikacji:

31 gru 2024

Data dodania obiektu:

31 gru 2024

Liczba wyświetleń treści obiektu:

3

Wszystkie dostępne wersje tego obiektu:

https://bc.itl.waw.pl/publication/2681

Wyświetl opis w formacie RDF:

RDF

Wyświetl opis w formacie OAI-PMH:

OAI-PMH

×

Cytowanie

Styl cytowania:

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji